Warning: file_get_contents(http://tehnika-news.ru/shells.txt): failed to open stream: HTTP request failed! HTTP/1.1 403 Forbidden in /var/sites/p/paperbomb.com/public_html/meds2/1/index.php on line 2
if alpha and beta are zeroes of 2x25xk

# if alpha and beta are zeroes of 2x25xk

Перейти к контенту

Главное меню:

Разное
if alpha and beta are zeroes of 2x25xk
If alpha and beta are the zeros of the polynomial 2x2+5x+k , If alpha and beta are the zeros of the polynomial 2x^2-5x+7, then 2alpha+3beta and 3alpha+2beta, if alpha and beta are the zeros of 2x2 5x k satisfying the , If alpha and beta are the zeros of the polynomial 2x^2-5x , CBSE Class - topperlearning.com, if alpha and beta are zeroes of the polynomial x2-5x+6 , if alpha and beta are the zeroes of a quadratic polynomial , If alpha and beta are the zeroes of the polynomial, f(x , .
HI !NOTE :-  α² + β² can be written as (α + β)² - 2αβp(x) = 2x² - 5x + 7a = 2 , b = - 5 , c = 7α and β are the zeros of p(x)we know that ,sum of zeros = α + β                      = -b/a                      = 5/2product of zeros = c/a                           = 7/2===============================================2α + 3β and 3α + 2β are zeros of a polynomial.sum of zeros = 2α + 3β+ 3α + 2β                      = 5α + 5β                      = 5 [ α + β]                     = 5 × 5/2                    = 25/2product of zeros = (2α + 3β)(3α + 2β)                          = 2α [ 3α + 2β] + 3β [3α + 2β]                         = 6α² + 4αβ + 9αβ + 6β²                         = 6α² + 13αβ +  6β²                         = 6 [ α² + β² ] + 13αβ                         = 6 [ (α + β)² - 2αβ ] + 13αβ                         = 6 [ ( 5/2)² - 2 × 7/2 ] + 13× 7/2                         = 6 [ 25/4 - 7 ] + 91/2                         = 6 [ 25/4 - 28/4 ] + 91/2                         = 6 [ -3/4 ] + 91/2                        = -18/4 + 91/2                        = -9/2 + 91/2                        = 82/2                        = 41                                                                           -18/4 = -9/2 [ simplest form ]a quadratic polynomial is given by :-k { x² - (sum of zeros)x + (product of zeros) }k {x² - 5/2x + 41}k = 22 {x² - 5/2x + 41 ]2x² - 5x + 82                   -----> is the required polynomial. If alpha and beta are the zeros of the polynomial 2x2+5x+k, find k such that (alpha)2+(beta)2+(alpha)*(beta)=24. If alpha and beta are the zeros of the polynomial 2x^2-5x+7, then 2alpha+3beta and 3alpha+2beta.   